BAB I

PENDAHULUAN

A. Latar Belakang Masalah

Radikal bebas telah menjadi ancaman bagi kesehatan makhluk hidup. Komponen ini merupakan bentuk molekul atau atom berelektron lebih dari satu dan tak berpasangan sehingga tidak stabil, sangat reaktif pada pengkilangan electron dari elektron di tubuh sebagai upaya mencapai kestabilan dalam tubuh, serta berumur pendek. Menurut Phaniendra et al., (2015), hal ini mampu mendistraksi integritas lipid sebagai biomolekul. DNA (Deoxyribose Nucleic Acid) serta protein dapat kenaikan stres oksidatif misalnya penyakit neurodegeneratif, diabetes, penyakit kardiovaskular, penuaan dini, dan bahkan kanker. Kondisi ini nyatanya telah cukup lama menjadi permasalahan serius. Menurut data World Health Organization (2017), semenjak tahun 2015, terdapat kematian sekitar 8,8 juta pasien yang disebabkan penyakit kanker. Hal inilah yang kemudian mencatatkan kanker sebagai penyebab kematian nomor 2 secara global.

Penumpukan radikal bebas yang memicu kanker dapat dicegah dengan antioksidan sebagai senyawa yang dapat menekan serta mencegah pembentukan radikan bebas di tubuh. Antioksidan berperan untuk mendonorkan elektron pada radikal bebas sehingga kerusakan dalam tubuh dapat teratasi. Pembentukan antioksidan dalam tubuh dapat terjadi baik secara eksogen seperti vitamin C, E, dan betakaroten, maupun juga secara endogen misalnya glutathione, ubiquinone dan asam urat (Arnanda & Nurwarda, 2019)

Meskipun keanekaragaman hayati di hutan Kalimantan memiliki keragaman dan keunggulang yang cukup tinggi, namun nyatanya hal ini kurang tereksplorasi dengan maksimal. Peluang dengan tingkat pemanfaatan yang belum maksimal salah satunya yakni spesies tumbuhan obat-obatan. Masyarakat Indonesia telah turun

menurun menggunakan tumbuhan tradisional dengan keanekaragam suku yang ada. Dengan kondisi banyaknya suku yang beranekaragam di Indonesia, pengetahuan pemanfaatan tumbuhan ini semakin luas (Apridamayanti & Kurniawan, 2018).

Menurut beberapa hasil penelitian, terdapat sekitar 1.300 spesies tanaman obat di hutan tropis Indonesia. Menurut Falah et al., (2013), Kalimantan Timur, suku Dayak mencatat terdapat 36 marga dan 36 jenis tumbuhan diantaranya dari marga Cassia alata, Calliacarpa longifilia, Tinospora crispa, Lansium domesticum, Blumea balsamifera, Hyptis brevipes, Brucea javanica, Fordia splendidissima, dan Clausena excavate sebagai tumbuhan obat.

Di Kutai Barat, Kalimantan Timur terdapat tumbuhan tropis yang banyak ditemukan di kawasan hutan dan kebun, salah satunya adalah buah kapul atau bisa dikenala juga dengan nama Baccaurea macrocarpa atau sering disebut tumbuhan tampoi. Tanaman ini menjadi endemic di Kalimantan, Sumatera dan Semenanjung Malaya. Buah-buahan lokal di daerah ini banyak hidup tanpa di budi dayakan secara intensif serta mampu hidup di perkarangan. Disamping itu, beberapa faktor mulai dari pengalihan industri, fungsi lahan untuk pemukiman manusia, pembangunan lainnya memengaruhi penurunan tanaman buah tropis. Selain pengalihan lahan, masuknya buah impor dan seleksi tanaman manusia juga mengurangi pemanfaatan buah lokal (Akhmadi, 2015).

Hasil penelitian Tirtana, (2013) menemukan dalam ekstrak metanol buah tampoi terdapat saponin, alkaloid, serta flavonoid yang berperan sebagai senyawa metabolit sekunder. Penelitian ini dijalankan dengan metode BSLT (*Brine Shrimp Lethality Test*). Berdasarkan penelitian yang telah dijalankan sebelumnya, nyatanya pengkajian aktivitas antioksidan tanaman tampoi baru

terbatas pada daging buah dan kulitnya, sedangkan kulit dari tanaman ini belum dikaji untuk diujikan aktivitas antioksidannya (Novitaria et al., 2016).

B. Rumusan Masalah

- 1. Apakah tanaman tampoi memiliki aktivitas biologi sebagai antioksidan?
- 2. Apa saja kandungan senyawa yang terdapat pada tanaman tampoi yang memiliki aktivitas antioksidan?
- 3. Apa saja bagian tumbuhan tampoi yang memiliki aktivitas antioksidan?

C. Tujuan Penelitian

- Mengetahui aktivitas biologi tanaman tampoi sebagai antioksidan
- 2. Mengetahui kandungan senyawa yang terdapat pada tanaman tampoi yang memiliki aktivitas antioksidan
- 3. Mengetahui bagian tumbuhan tampoi yang memiliki aktivitas antioksidan

D. Manfaat Penilitian

- Hasil penelitian dapat digunakan sebagai tolak ukur untuk mengkonfirmasi aktivitas antioksidan tanaman tampoi (Baccaurea macrocarpa)
- 2. Hasil penelitian ini dapat digunakan untuk menambah wawasan ilmu pengetahuan tentang salah satu tanaman obat khas Kalimantan Timur

E. Keaslian Penelitian

Keaslian penelitian berfungsi untuk menggambarkan perbedaan antara penelitian yang dilakukan dibandingkan dari penelitian yang sebelumnya. Dengan keaslian penelitian ini, kita dapat mengetahui apakah penelitian tersebut merupakan salinan

penelitian yang sudah pernah dilakukan, pengembangan dari penelitian sebelumnya atau modifikasi dari metode, alat ukur maupun sampel dari suatu penelitian. Dan berikut keaslian penelitian ini dibandingkan dengan penelitian sebelumnya:

No	Pembeda	Arimbi	Astuti M et	Novitaria et al,
		Wahyu	al, 2020	2016
		Ningdyah <i>et</i>		
		<i>al,</i> 2015		
1	Judul	Uji Toksisitas	The	Isolasi Dan
	Penelitian	Dengan	Antioxidant	Karakterisasi
		Metode BSLT	Activity of	Golongan
		(Brine Shrimp	White	Senyawa
		Lethality Test)	(Baccaurea	Fenolik Dari
		Terhadap	macrocarpa)	Batang Kulit
		Hasil	fruit rinds	Batang Tampoi
		Fraksinasi		(Baccaurea
		Ekstrak Kulit		macrocarpa)
		Buah Tampoi		
2	Sampel	Kulit buah	Kulit buah	Ekstrak kulit
	(Subjek)	tampoi	kapul putih	batang tampoi
	Penelitian			
3	Variabel	Uji toksisitas	Aktivitas	Isolasi dan
	Penelitian	terhadap hasil	antioksidan	karakterisasi
		fraksinasi	dari kulit	golongan
		ekstrak kulit	buah kapul	senyawa fenolik
		buah tampoi	putih	batang kulit
				tampoi
4	Metode	Metode BSLT	Metode	Uji aktivitas
	Penelitian	(Brine Shrimp	DPPH	antioksidan
		Lethality Test)		dilakukan
				dengan metode

				DPPH dan
				karakterisasi
				isolate yang
				diperoleh
				-
				menggunakan
				spektrofotometer
				FT-IR
5	Hasil	Hasil uji	Ekstrak	Terdapat
	Penelitian	menunjukkan	memiliki	aktivitas
		fraksi etil	aktivitas	antioksidan
		asetat adalah	antioksidan	dengan nilai IC ₅₀
		fraksi yang	dengan IC ₅₀	fraksi n-heksana
		paling aktif	bervariasi	36,60 ppm,
		dengan nilai	dari 22.968	fraksi etil asetat
		LC ₅₀ sebesar	hingga	57,60 ppm, dan
		78,458 ppm,	141.931 ppm,	fraksi metanol
		fraksi metanol	dan IC ₅₀	43,3 ppm.
		dengan LC ₅₀	asam	Senyawa yang
		111,985 ppm.	askorbat	terdapat pada
		Berdasarkan	adalah 5,019	fraksi a₁
		derajat	ppm.	merupakan
		toksisitas	Aktivitas	senyawa fenolik
		fraksi etil	antioksidan	dengan gugus
		asetat dan	diukur pada	dan bilangan
		fraksi metanol	panjang	gelombang
		bersifat toksik.	gelombang	sebagai berikut:
		Ekstrak yang	516 nm, yang	gugus -OH
		bersifat toksik	merupakan	(3402,43 cm- ¹),
		saat diuji	serapan	serapan gugus -
		dengan	maksimum	CH alifatik
		metode <i>Brine</i>	DPPH.	(2854,65 cm- ¹),
		shrimp		dan serapan –
		<i>-</i>		

lethality test	C=C aromatik
(BSLT) dapat	(1519,91 cm- ¹ ,
menyebabkan	1442,75 cm- ¹
kematian 50	dan 1373,32 cm-
% larva	1)
artemia dalam	
waktu 24 jam	
pada	
konsentrasi	
LC ₅₀ <1000	
ppm,	
menunjukkan	
bahwa sampel	
berpotensi	
sebagai	
antikanker,	
antibakteri,	
antijamur.	