NASKAH PUBLIKASI (MANUSCRIPT)

PENGARUH PENDINGINAN AIR DENGAN PENAMBAHAN WATERPUMP PADA ENGINE DIESEL 1 SILINDER TERHADAP UNJUK KERJA

EFFECT OF WATER COOLINGWITH THE ADDITION OF WATERPUMP ON 1 CYLINDER DIESEL ENGINES ON PERFORMANCE

Bangkit Samudra Wiwoho¹, Khanif Setiyawan²

DISUSUN OLEH:

BANGKIT SAMUDRA WIWOHO NIM. 2011102442083

DOSEN PEMBIMBING: KHANIF SETIYAWAN, S. T., M. T

PROGRAM STUDI S1 TEKNIK MESIN
FAKULTAS SAINS DAN TEKNOLOGI
UNIVERSITAS MUHAMMADIYAH KALIMANTAN TIMUR
SAMARINDA

2023

Naskah Publikasi (Manuscript)

Pengaruh Pendinginan Air dengan Penambahan Water Pump pada Engine Diesel 1 Silinder terhadap unjuk Kerja

The Effect of Water Cooling with the Addition of Water Pump on 1 Cylinder Diesel

Engine on Performance

Bangkit Samudra Wiwoho¹, Khanif setiyawan²

Di Susun Oleh :
Bangkit Samudra Wiwoho
NIM. 2011102442083

Dosen Pembimbing : Khanif Setiyawan, S. T., M. T

PROGRAM STUDI S1 TEKNIK MESIN
FAKULTAS SAINS DAN TEKNOLOGI
UNIVERSITAS MUHAMMADIYAH KALIMANTAN TIMUR
SAMARINDA

2023

LEMBAR PENGESAHAN

PENGARUH PENDINGINAN AIR DENGAN PENAMBAHAN WATERPUMP PADA ENGINE DIESEL 1 SILINDER TERHADAP UNJUK KERJA

NASKAH PUBLIKASI

Diajukan oleh:

Bangkit Samudra Wiwoho NIM 2011102442083

Penguji I	Penguji II	Penguji III	
		90	
2	Am	A	
	Thing		
Agus Mujianto, S.T., M.T	Khanif Setiyawan, S.T., M.T	Andi Nugroho, S.T., M.T	
NIDN 1124088603	NIDN 1123057301	NIDN 1129089001	

Mengetahui Ketua Program Studi Teknik Mesin

r. Anis Siti Nurrohkayati, S. T., M. T

NIDN 1114019202

NASKAH PUBLIKASI (MANUSCRIPT)

EFFECT OF WATER COOLING WITH THE ADDITION OF WATERPUMP ON 1-CYLINDER DIESEL ENGINES ON PERFORMANCE

PENGARUH PENDINGINAN AIR DENGAN PENAMBAHAN WATERPUMP PADA ENGINE DIESEL 1 SILINDER TERHADAP UNJUK KERJA

Bangkit Samudra Wiwoho¹, Khanif Setiyawan² {bangkitsamudra86@gmail.com¹, ks366@umkt.ac.id²}

Program Studi Teknik Mesin, Universitas Muhammadiyah Kalimantan Timur

ABSTRAK

Penelitian ini bertujuan untuk mengetahui seberapa besar pengaruh sirkulasi air pendingin terhadap unjuk kerja Torsi, Daya dan Sfc dari variasi jumlah air pada reservoir sebanyak 10 liter, 15 liter dan 20 liter dibandingkan dengan pendinginan standar menggunakan system hopper. Unjuk kerja motor diesel akan dipengaruhi oleh beberapa faktor, salah satunya yaitu mensirkulasikan air pendingin pada pendingin hopper dan ditambahkan dengan air pada tangki reservoir. Pengujian ini dilakukan dengan menggunakan panel beban lampu dengan memvariasikan mulai dari 200 sampai 3400 watt pada motor diesel putaran konstan sebesar 1500 rpm atau 50 Hz dengan bahan bakar dexlite. Dari hasil pengujian secara ekperimental dengan variasi volume air pada tangki reservoir, daya terbaik dengan volume air pada reservoir (20 liter) menunjukan daya sebesar 2407 Watt pada pembebanan 2900, hasil ini menunjukan kenaikan daya sebesar 0.173% dari pendinginan standarnya. Sedangkan torsi terbaik di dapat dengan volume air pada reservoir (20 liter) sebesar 15.331 Nm pada pembebanan 2900 Watt, meningkat sebesar 0.173%, Serta konsumsi bahan bakar spesifik (Sfc) terendah dengan volume air pada reservoir (20 liter) yaitu 0.615 kg/kw.h pada pembebanan 2000 Watt, didapatkan Sfc menurun sebesar -0.226%. Hal ini menunjukan bahwa semakin banyak volume air pada reservoir yang disirkulasikan, pendinginanan dan unjuk kerja motor menjadi lebih optimal.

Kata kunci: Motor diesel, Sirkulasi air pendingin, Unjuk kerja.

I. PENDAHULUAN

Perkembangan teknologi otomotif khususnya motor diesel mengalami perkembangan yang begitu pesat karena didukung tingkat kemajuan teknologi dan kualitas sumber daya manusia yang semakin meningkat. Motor bakar merupakan penggerak yang memanfaatkan proses pembakaran untuk penghasil tenaga utama, adapun proses pembakaran yang ada yaitu proses pembakan dalam dan proses pembakaran luar. Ada dua tipe pembakaran dalam yaitu motor bakar bensin dan motor bakar diesel, penggunaan motor diesel pada saat ini juga semakin meluas karena pada kapasitas yang sama pemakain bahan bakar motor diesel lebih efisien bila dibandingkan dengan motor bensin. Motor diesel merupakan salah satu tipe penggerak yang paling banyak digunakan pada sector industry dan transportasi, terutama digunakan pada alat atau permesinan yang membutuhkan penggerak dengan daya yang besar.

Motor diesel tekanan konstan yang banyak digunakan pada industri rumah tangga dan berbagai macam penggunaannya yang dimanfaatkan oleh kalangan menengah kebawah yang notabelnya mereka awam akan perawatan apalagi performa yang dihasilkan oleh motor diesel itu sendiri. Berbagai macam cara untuk meningkatkan unjuk kerja motor diesel tekanan konstan yang tentunya untuk membantu masyarakat yang awam akan system motor bakar khususnya motor diesel, pengoptimalan itu diantaranya adalah memperbaiki system didalam otor bakar itu sendiri sampai dengan penambahan komponen di luar dari pada motor bakar itu sendiri.

Mendasarkan pada penelitian sebelumnya tentang bagaimana meningkatkan unjuk kerja motor diesel putaran konstan, mulai dari system pengisian sampai dengan perubahan pada asupan bahan bakar untuk konsumsi motor itu sendiri. Sering kira perhatikan saat operasional motor diesel putaran konstan itu sendiri, yaitu sinstem pendinginan yang masih menggunakan system *hopper*, dimana tidak ada perpindahan panas dari air system pendingin itu terhadap udara luar. Dari situ bias kita analisa bahwa system pendinginan dalam motor diesel belum optimal.

II. METODE PENELITIAN

1. Desain Penelitian

Metedologi merupakan cara yang dipakai dalam kegiatan penelitian, sehingga pelaksanaan dan hasilnya dapat dipertanggung jawabkan secara kajian akademik maupun ilmiah. Penelitian ini dilakukan untuk mengetahui unjuk kerja motor diesel. Agar penelitian ini lebih terarah dalam segala kegiatannya, maka perlu dibagi dalam tahapan-tahapan kerja yang dituangkan dalam langkah-langkah eksperimen, pelaksanaan eksperimen, diagram alir penelitian, dan lembar pengamatan.

Pada penelitian ini metode yang digunakan adalah penelitian eksperimental untuk mengetahui pengaruh sirkulasi air pendingin pada system pendingin motor diesel putaran konstan terhadap daya, torsi, serta *sfc*.

2. Variabel Penelitian

a. Variabel Bebas

Variabel bebas adalah kondisi yang mempengaruhi munculnya suatu kondisi atau gejala. Dalam hal ini dapat dikatakan bahwa variabel bebas merupakan variabel yang sengaja pengaruhnya terhadap variabel tetap. Variabel bebas pada penelitian ini adalah jumlah air pada penampungan yang akan di sirkulasikan yaitu 10 liter, 15 liter dan 20 liter.

b. Variabel Terikat

Variabel terikat pada penelitian ini adalah parameter yang akan diujiakan antara lain seperti Daya, Torsi, dan *Sfc*.

c. Variable Kontrol

Variabel kontrol adalah suatu perbandingan antara variabel bebas dan variabel tetap. Variabel kontrol pada penelitian ini adalah pembebanan pada motor diesel yang menggunakan panel pembebanan lampu dengan variasi pembebanan sebesar 200watt, 400watt, 600watt, watt sampai 3000watt dengan interval 200watt kenaikan dan 100 watt kenaikannya setelah 2500 watt.

3. Tempat, Alat dan Bahan

a. Tempat Penelitian

Tempat yang digunakan dalam pengujian untuk mencari data penelitian adalah di Lab. Teknik Mesin UMKT 2 Jl.Cipto Mangunkusumo Harapan baru Kec. Loa Janan Ilir Kota Samarinda Kalimantan Timur.

- b. Alat
- 1. Panel pembebanan lampu
- 2. Burret
- 3. Power analyzer
- 4. Stopwatch
- 5. Toolkit
 - c. Bahan Penelitian
- 1. Motor Diesel stasioner yang akan digunakan untuk penelitian dengan spesifikasi sebagai berikut; Type 1 silinder berpendingin air 4 Langkah; Diameter silinder 80mm; Piston Stroke 80mm; Perbandingan Kompresi 21:1, dengan daya maksimal 8 hp pada putaran 2600.
- 2. Pompa sirkulasi air
- 3. Generator set dengan spesifikasi; Merk HuaFa; Power 3KW; Voltase 230V; Arus 13 A; Frekuensi 50Hz; Putaran 1500rpm.
- 4. Selang air sebagai media atau lintasan sirkulasi air pendingin.
- 5. Bahan bakar minyak (BBM), yang digunakan adalah dexlite
- 6. Air tawar untuk reservoir yang akan di sirkulasikan

4. Teknik Pengumpulan Data

Dalam teknik pengumpulan data ini dibagi menjadi 3 bagian, diantaranya adalah sebagai berikut:

- 1. Study literature
 - Dilakukan dengan cara mempelajari referensi, buku-buku, media-media yang berkaitan dengan penelitian yang akan di kaji.
- 2. Eksperimen
 - Percobaan atau memodifikasi sesuatu yang sudah jadi menjadi lebih optimal yang biasanya dilakukan di Laboratorium.
- 3. Pengamatan (Observasi)
 - Pengumpulan data yang dipakai untuk mengetahui hasil-hasil dari penelitian yang telah dilakukan.
- 4. Pengumpulan data penelitian

Pengumpulan data dipakai untuk mengetahui hasil-hasil dari penelitian yang telah dilakukan yang kemudian akan dilakukan perhitungan, kemudian hasil perhitungan tersebut dikelompokkan kedalam tabel sebagai berikut:

Tabel pengumpulan data Daya

Beban (watt)	Daya (kW)					
	Standart (tanpa sirkulasi air	Dengan volume air pada reservoir yang disirkulasikan				
	pendingin)	10 liter	15 liter	20 liter		
200						

400		
↓		
3400		

Tabel Pengumpulan data Torsi

Beban	1 data Torsi					
(watt)	Standart (tanpa sirkulasi air					
	pendingin)	10 liter	15 liter	20 liter		
200						
400						
 						
3400						

Tabel Pengumpulan data Sfc

engumputan data Sie						
Beban (watt)	Sfc (Kg/kWh)					
	Standart (tanpa sirkulasi air	Dengan volume air pada reservoir yang disirkulasikan				
	pendingin)	10 liter	15 liter	20 liter		
200						
400						

		
3400		

III. Data Hasil Penelitian

Setelah melakukan pengujian dan perhitungan didapat data-data dari pengujian yang dilakukan, telah diperoleh data mengenai daya, torsi serta sfc yang dihasilkan oleh motor diesel dengan kondisi standar yang kemudian ditambah dengan air sebanyak 10 liter, 15 liter, 20 liter yang disirkulasikan pada system pendingin.

1. Pengujian dengan pendinginan standar (system hopper)

Dari hasil pengujian didapatkan beberapa data yang akan diolah dan dianalisa antara lain adalah daya dari lampu yang dibebankan pada motor diesel ini, daya yang dihasilkan oleh motor dan lama waktu yang dibutuhkan motor untuk menghabiskan bahan bakar dengan volume yang sudah ditentukan. Berikut adalah data yang didapatkan dari pengujian tahap pertama.

Tabel Data pengujian dengan pendingin hopper (standar)

NO	BEBAN (W)	DAYA (W)	t (s)	T0 (°C)
1	200	198	108	46
2	400	303	96	48
3	600	524	86	57
4	800	754	77	60
5	1000	859	69	64
6	1200	1124	62	67
7	1400	1335	58	70
8	1600	1514	53	72
9	1800	1645	50	73
10	2000	1799	48	75
11	2200	1857	45	74
12	2400	2001	42	76
13	2500	2089	42	78
14	2600	2115	41	80
15	2700	2027	40	84
16	2800	2078	40	82
17	2900	2156	40	79
18	3000	2115	39	84
19	3100	2098	39	85
20	3200	2054	36	77
21	3300	2049	34	83
22	3400	1927	32	84

Setelah mendapatkan data diatas, maka diolah untuk memperoleh Daya, Torsi dan Sfc. Sedangkan untuk T0 adalah hasil ukur temperature yang ada pada tangki hopper, tidak ada perhitungan untuk data temperatur karena hanya sebagai pembanding atau untuk mengetahui keadaan sebenarnya yang ada pada air di dalam tangki tersebut. Berikut adalah salah satu contoh pengolahan data dari hasil pengujian yang telah dilakukan.

Tabel Hasil pengolahan data dengan pendingin hopper (standar)

NO	BEBAN	DAYA	TORSI	Sfc
110	(W)	(kW)	(N.m)	(Kg/kWh)
1	200	0.198	1.261	2.896
2	400	0.303	1.930	2.129
3	600	0.524	3.338	1.374
4	800	0.754	4.803	1.067
5	1000	0.859	5.471	1.045
6	1200	1.124	7.159	0.889
7	1400	1.335	8.503	0.800
8	1600	1.514	9.643	0.772
9	1800	1.645	10.478	0.753
10	2000	1.799	11.459	0.717
11	2200	1.857	11.828	0.741
12	2400	2.001	12.745	0.737
13	2500	2.089	13.306	0.706
14	2600	2.115	13.471	0.714
15	2700	2.027	12.911	0.764
16	2800	2.078	13.236	0.745
17	2900	2.1	13.376	0.737
18	3000	2.101	13.382	0.756
19	3100	2.098	13.363	0.757
20	3200	2.054	13.083	0.837
21	3300	2.049	13.051	0.889
22	3400	1.927	12.274	1.004

2. Pengujian dengan 10 liter air pada tangki reservoir.

Dari hasil pengujian didapatkan beberapa data yang akan diolah dan dianalisa antara lain adalah daya dari lampu yang dibebankan pada motor diesel ini, daya yang dihasilkan oleh motor dan lama waktu yang dibutuhkan motor untuk menghabiskan bahan bakar dengan volume yang sudah ditentukan. Berikut adalah data yang didapatkan dari pengujian dengan volume air pada reservoir sebanyak 10 liter.

Tabel Data pengujian kedua dengan volume air sebanyak 10 liter pada reservoir

NO	BEBAN	DAYA	t	T1	T2
NO	(W)	(W)	(s)	(°C)	(°C)
1	200	201	110	48	30
2	400	351	98	50	31
3	600	616	87	50	32
4	800	878	77	53	32
5	1000	1098	70	53	32
6	1200	1320	63	50	39
7	1400	1518	59	47	35
8	1600	1697	53	52	34
9	1800	1863	51	50	39
10	2000	1991	48	49	33
11	2200	2198	46	49	32
12	2400	2231	43	50	39

15	2700	2333	41	48	35
16	2800	2330	40	48	35
17	2900	2300	40	50	39
18	3000	2317	39	51	41
19	3100	2320	37	51	42
20	3200	2318	35	49	40
21	3300	2280	33	52	43
22	3400	2262	32	53	41

Tabel Hasil pengolahan data dengan volume reservoir 10 liter

NO	BEBAN (W)	DAYA (kW)	TORSI (N.m)	Sfc (Kg/kWh)
1	200	0.201	1.280	2.801
2	400	0.351	2.236	1.800
3	600	0.616	3.924	1.155
4	800	0.878	5.592	0.916
5	1000	1.098	6.994	0.806
6	1200	1.32	8.408	0.745
7	1400	1.518	9.669	0.691
8	1600	1.697	10.809	0.688
9	1800	1.863	11.866	0.652
10	2000	1.991	12.682	0.648
11	2200	2.198	14	0.612
12	2400	2.231	14.210	0.645
13	2500	2.266	14.433	0.651
14	2600	2.287	14.567	0.645
15	2700	2.333	14.860	0.647
16	2800	2.33	14.841	0.664
17	2900	2.3	14.650	0.673
18	3000	2.317	14.758	0.685
19	3100	2.32	14.777	0.721
20	3200	2.318	14.764	0.763
21	3300	2.28	14.522	0.823
22	3400	2.262	14.408	0.855

3. Pengujian dengan 15 liter air pada tangki reservoir.

Dari hasil pengujian didapatkan beberapa data yang akan diolah dan dianalisa antara lain adalah daya dari lampu yang dibebankan pada motor diesel ini, daya yang dihasilkan oleh motor dan lama waktu yang dibutuhkan motor untuk menghabiskan bahan bakar dengan volume yang sudah ditentukan. Berikut adalah data yang didapatkan dari pengujian dengan volume air pada reservoir sebanyak 15 liter. Data tersebut bisa dilihat pada tabel.

Tabel Data pengujian dengan 15 liter pada reservoir.

NO	BEBAN	DAYA	t	T1	T2
NO	(W)	(W)	(s)	(°C)	(°C)
1	200	209	111	34	29
2	400	533	100	33	29
3	600	893	87	40	33
4	800	1055	78	35	30
5	1000	1292	68	35	28
6	1200	1409	63	36	29
7	1400	1598	58	42	30
8	1600	1703	54	41	28
9	1800	1907	51	37	29
10	2000	2049	48	41	30
11	2200	2156	46	37	29
12	2400	2238	44	40	30
13	2500	2257	42	45	29
14	2600	2288	42	50	31
15	2700	2300	41	47	32
16	2800	2336	41	46	28
17	2900	2321	40	36	33
18	3000	2311	40	36	33
19	3100	2260	39	36	33
20	3200	2290	37	37	32
21	3300	2254	38	40	32
22	3400	2226	37	42	34

Dari hasil yang didapat dari penelitian tahap ketiga dapat dianalisa data menghitung Daya motor diesel satu silinder putaran konstan.

Untuk data keseluruhan yang sudah di analisa hasil perhitungannya, penulis merangkum menjadi satu table, diharapkan supaya pembaca lebih mudah untuk melihat hasil dari perhitungan yang sudah dilakukan penulis. Sedangkan data yang diolah meliputi daya motor diesel satu silinder putaran konstan

Setelah pengujian motor diesel satu silinder putaran konstan tahap ketiga dengan mensirkulasikan air pada system pendingin sebesar 15 liter pada tangki reservoir , didapatkan hasil daya tertinggi sebesar 2336 watt pada pembebanan lampu 2800 watt, torsi tertinggi diperoleh data sebesar 14.879 Nm pada pembebahanan lampu 2800 watt, dan sfc terendah yaitu 0.624 kg/kW.h saat pembebanan lampu sebesar 2200 watt. Dan pelepasan pana yang dihitung dari keluaran water jacket dan masukan ke dalam tangki, data tersebut bisa dilihat pada table

Tabel Hasil pengolahan data dengan 15 liter air dalam reservoir

NO	BEBAN (W)	DAYA (kW)	TORSI (N.m)	Sfc (Kg/kWh)
1	200	0.209	1.331	2.669
2	400	0.533	3.395	1.162

3	600	0.893	5.688	0.797
4	800	1.055	6.720	0.752
5	1000	1.292	8.229	0.705
6	1200	1.409	8.975	0.698
7	1400	1.598	10.178	0.668

8	1600	1.703	10.847	0.673
9	1800	1.907	12.146	0.637
10	2000	2.049	13.051	0.630
11	2200	2.156	13.732	0.624
12	2400	2.238	14.255	0.629
13	2500	2.257	14.376	0.653
14	2600	2.288	14.573	0.644
15	2700	2.3	14.650	0.657
16	2800	2.336	14.879	0.647
17	2900	2.321	14.783	0.667
18	3000	2.311	14.720	0.670
19	3100	2.26	14.395	0.703
20	3200	2.29	14.586	0.731
21	3300	2.254	14.357	0.723
22	3400	2.226	14.178	0.752

4. Pengujian dengan 20 liter air pada tangki reservoir.

Dari hasil pengujian didapatkan beberapa data yang akan diolah dan dianalisa antara lain adalah daya dari lampu yang dibebankan pada motor diesel ini, daya yang dihasilkan oleh motor dan lama waktu yang dibutuhkan motor untuk menghabiskan bahan bakar dengan volume yang sudah ditentukan. Berikut adalah data yang didapatkan dan dituliskan pada table .

Tabel Data pengujian dengan 20 liter pada reservoir

NO	BEBAN (W)	DAYA (W)	t (s)	T1 (°C)	T2 (°C)
1	200	266	108	30	20
2	400	578	96	33	27
3	600	901	86	34	28
4	800	1067	77	35	29
5	1000	1299	69	37	30
6	1200	1432	62	38	31
7	1400	1600	58	39	31
8	1600	1743	53	40	33
9	1800	1932	50	43	32
10	2000	2098	48	45	33
11	2200	2178	45	44	34
12	2400	2213	42	43	30
13	2500	2244	42	40	33
14	2600	2287	41	40	31
15	2700	2301	40	42	33
16	2800	2343	40	43	32
17	2900	2407	40	41	30

18	3000	2387	39	42	32
19	3100	2365	39	45	35
20	3200	2325	38	47	36
21	3300	2300	38	48	39
22	3400	2568	36	50	41

Untuk data keseluruhan yang sudah di analisa hasil perhitungannya, penulis merangkum menjadi satu table, diharapkan supaya pembaca lebih mudah untuk melihat hasil dari perhitungan yang sudah dilakukan penulis. Data yang diambil adalah daya, torsi, dan Sfc motor diesel satu silinder putaran konstan.

Setelah pengujian motor diesel satu silinder putaran konstan tahap keempat dengan mensirkulasikan air pada system pendingin sebesar 20 liter pada tangki reservoir, didapatkan hasil daya tertinggi sebesar 2407 watt pada pembebanan lampu 2900 watt, torsi tertinggi diperoleh data sebesar 15.331 Nm pada pembebahanan lampu 2900 watt, dan sfc terendah yaitu 0.615 kg/kW.h saat pembebanan lampu sebesar 2000 watt. data tersebut bisa dilihat pada tabel di bawah.

Tabel Hasil pegolahan data dengan 20 liter air pada reservoir

NO	BEBAN	DAYA	TORSI	Sfc
1,0	(W)	(kW)	(N.m)	(Kg/kWh)
1	200	0.266	1.694	2.155
2	400	0.578	3.682	1.116
3	600	0.901	5.739	0.799
4	800	1.067	6.796	0.754
5	1000	1.299	8.274	0.691
6	1200	1.432	9.121	0.697
7	1400	1.6	10.191	0.667
8	1600	1.743	11.102	0.670
9	1800	1.932	12.306	0.641
10	2000	2.098	13.363	0.615
11	2200	2.178	13.873	0.632
12	2400	2.213	14.096	0.666
13	2500	2.244	14.293	0.657
14	2600	2.287	14.567	0.660
15	2700	2.301	14.656	0.673
16	2800	2.343	14.924	0.661
17	2900	2.407	15.331	0.643
18	3000	2.387	15.204	0.665
19	3100	2.365	15.064	0.671
20	3200	2.325	14.809	0.701

21	3300	2.3	14.650	0.708
22	3400	2.268	14.446	0.758

IV. Kesimpulan

Adapun kesimpulan yang dapat diambil setelah melakukan pengujian unjuk kerja motor diesel putaran konstan yang dilengkapi dengan mensirkulasikan air pendingin *hopper system* dengan volume air pada tangki reservoir yang berubah ubah, didapatkan Daya, Torsi dan Sfc yang lebih baik dibandingkan pendinginan standar dengan pendingin hopper. Sedangkan untuk volume air pendingin yang disirkulasikan pada pendingin hopper tersebut dapat disimpulkan bahwa semakin banyak volume air yang disirkulasikan, semakin baik pendinginan yang terjadi, semakin baik juga Daya, Torsi dan Sfc nya.

UCAPAN TERIMA KASIH

Pada proses penyusunan paper ini kami menjumpai berbagai hambatan, namun berkat dukungan materil maupun non-materil dari berbagai pihak, akhirnya kami dapat menyelesaikan penyusunan dari paper ini dengan cukup baik, maka pada kesempatan ini, kami mengucapkan terima kasih kepada:

- 1. Prof. Ir. Sarjito, M.T., Ph.D., IPM Selaku Dekan Fakultas Sains dan Teknologi UMKT.
- 2. Anis Siti Nurrohkayati, S.T., M.T. Selaku Ketua Program Studi S1 Teknik Mesin UMKT.
- 3. Khanif Setiyawan, S.T., M.T. Selaku Dosen Pembimbing Tugas Akhir.
- 4. Keluarga yang telah memberikan doa dan dukungan selama poses pembuatan laporan.
- $5. \ \ Rekan-rekan \ mahasiswa \ Prodi \ S1 \ Teknik \ Mesin \ UMKT.$

Semoga paper ini bisa memberikan manfaat bagi kita semua.

REFERENSI

Abdul Latief Had & Eko Haryono (2012), melakukan penelitian tentang: Kinerja Motor Diesel Akibat Pemasangan Thermostat Pada Nanchang Type 2105A-3.

Atmaja Kurniadi (2014), melakukan penelitian tentang: Efisiensi Suhu kerja Motor Antara Pemakaian Water pump Dan Tanpa Water pump Pada Motor Diesel Satu Silinder Merk Dong Feng S195.

Basyirun dkk. (2008), Buku Ajar Mesin Konversi Energi. PKUPT Unnes Semarang.

Gatot Soebiyakto Widya Teknika Vol.20 No.1; Maret (2012), Pengaruh Penggunaan Water Coolant Terhadap Performace MotorDisel.

Rahmat, Doni, Widodo, & Karnowo, (2008), Teori Mesin Diesel, Semarang. Sukoco, & Zainal Arifin, (2008), Teknologi Motor Diesel, Alfabeta, Bandung.

Link Submit Naskah Publikasi:

https://jurnal.poliupg.ac.id/index.php/Sinergi/author/submission/4752