• English
    • Bahasa Indonesia
  • Bahasa Indonesia 
    • English
    • Bahasa Indonesia
  • Login
View Item 
  •   UMKT-DR Home
  • Faculties and Schools
  • Faculty of Science and Technology
  • School of Informatics
  • S1 Final Project
  • View Item
  •   UMKT-DR Home
  • Faculties and Schools
  • Faculty of Science and Technology
  • School of Informatics
  • S1 Final Project
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Perbaikan Akurasi Random Forest dengan Anova dan Smote pada Klasifikasi Data Stunting

Thumbnail
View/Open
COVER (1.145Mb)
BAB 1 (623.9Kb)
BAB 2 (1.211Mb)
BAB 3 (1000.Kb)
BAB 4 (768.4Kb)
DAFTAR PUSTAKA (375.8Kb)
LAMPIRAN (2.373Mb)
SKRIPSI (3.671Mb)
Date
2024-07-04
Author
Dhani, Ari Ahmad
Metadata
Show full item record
Abstract
Stunting terus menjadi isu kesehatan masyarakat yang kritis di Indonesia, khususnya di Kota Samarinda yang mencatat prevalensi sebesar 25,3% pada tahun 2022, menjadi yang tertinggi kedua di Provinsi Kalimantan Timur. Di tengah prioritas nasional untuk riset 2020-2024, penggunaan data mining untuk klasifikasi stunting memperlihatkan potensi yang signifikan namun tetap menghadapi tantangan dalam menangani data berdimensi tinggi dan ketidakseimbangan kelas. Penelitian ini bertujuan untuk meningkatkan akurasi klasifikasi stunting menggunakan metode Random Forest yang diintegrasikan dengan seleksi fitur ANOVA dan teknik SMOTE untuk menyeimbangkan kelas. Data yang digunakan dalam penelitian ini bersumber dari Dinas Kesehatan Kota Samarinda, meliputi 26 puskesmas dengan 21 atribut dan total 150.466 record. Teknik validasi yang dipakai adalah cross-validation k-fold=10. Hasil menunjukkan peningkatan akurasi dari 98,83% menjadi 99,77% naik sebesar 0,94% setelah penerapan seleksi fitur ANOVA. Fitur ZS TB/U, ZS BB/U, dan BB/U diidentifikasi sebagai yang paling berpengaruh. Peningkatan ini menunjukkan efektivitas integrasi metode dalam mengatasi masalah stunting pada dataset yang kompleks dan tidak seimbang, ini diharapkan dapat mendukung kebijakan dan intervensi kesehatan lebih lanjut di kawasan tersebut.
URI
https://dspace.umkt.ac.id//handle/463.2017/4453
Collections
  • S1 Final Project
UMKT-DR  © 2018  Universitas Muhammadiyah Kalimantan Timur
Contact Us | Send Feedback
 

 

Browse

All of UMKT-DRCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login
UMKT-DR  © 2018  Universitas Muhammadiyah Kalimantan Timur
Contact Us | Send Feedback