Show simple item record

dc.contributor.authorARSY AL KHAIRY SIREGAR, KHALISH
dc.date.accessioned2024-02-22T02:05:18Z
dc.date.available2024-02-22T02:05:18Z
dc.date.issued2023-06-19
dc.identifier.citationAmanda, S. S. (2021). Analisis Molecular Docking Potensi Senyawa Pada Daun Miyana (Coleus Blumei) Sebagai Antibiotik Terhadap Bakteri MRSA (Metichillin Resistent Staphylococcus Aureus). UIN Alauddin Makassar. Baldi, A. (2010). Computational approaches for drug design and discovery: An overview. Systematic Reviews in Pharmacy, 1(1), 99. https://doi.org/10.4103/0975-8453.59519 Bao, W., Li, K., Rong, S., Yao, P., Hao, L., Ying, C., Zhang, X., Nussler, A., and Liu, L. (2010). Curcumin alleviates ethanol-induced hepatocytes oxidative damage involving heme oxygenase-1 induction. Journal of Ethnopharmacology, 128(2), 549–553. https://doi.org/10.1016/j.jep.2010.01.029 Berthier, A., Johanns, M., Zummo, F. P., Lefebvre, P., and Staels, B. (2021). PPARs in liver physiology. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1867(5), 166097. https://doi.org/10.1016/j.bbadis.2021.166097 Bhullar, K. S., Jha, A., and Rupasinghe, H. P. V. (2015). Novel carbocyclic curcumin analog CUR3d modulates genes involved in multiple apoptosis pathways in human hepatocellular carcinoma cells. Chemico-Biological Interactions, 242, 107–122. https://doi.org/10.1016/j.cbi.2015.09.020 BIOVIA. (2019). Discovery Studio Visualizer. Dassault Systèmes. https://discover.3ds.com/discovery-studiovisualizer Bonfanti, R., Musumeci, T., Russo, C., and Pellitteri, R. (2017). The protective effect of curcumin in Olfactory Ensheathing Cells exposed to hypoxia. European Journal of Pharmacology, 796, 62–68. https://doi.org/10.1016/j.ejphar.2016.11.038 Brasca, M. G., Mantegani, S., Amboldi, N., Bindi, S., Caronni, D., Casale, E., Ceccarelli, W., Colombo, N., De Ponti, A., Donati, D., Ermoli, A., Fachin, G., Felder, E. R., Ferguson, R. D., Fiorelli, C., Guanci, M., Isacchi, A., Pesenti, E., Polucci, P., … Fogliatto, G. (2013). Discovery of NMS-E973 as novel, selective and potent inhibitor of heat shock protein 90 (Hsp90). Bioorganic & Medicinal Chemistry, 21(22), 7047–7063. https://doi.org/10.1016/j.bmc.2013.09.018 Chandrashekar, D. S., Karthikeyan, S. K., Korla, P. K., Patel, H., Shovon, A. R., Athar, M., Netto, G. J., Qin, Z. S., Kumar, S., Manne, U., Creighton, C. J., and Varambally, S. (2022). UALCAN: An update to the integrated cancer data analysis platform. Neoplasia, 25, 18–27. https://doi.org/10.1016/j.neo.2022.01.001 Chen, J., Li, C., Zhu, Y., Sun, L., Sun, H., Liu, Y., Zhang, Z., and Wang, C. (2015). Integrating GO and KEGG terms to characterize and predict acute myeloid leukemia-related genes. Hematology, 20(6), 336–342. https://doi.org/10.1179/1607845414Y.0000000209 Chi, C.-W., and Hsu, H.-T. (2014). Emerging role of the peroxisome proliferator-activated receptor-gamma in hepatocellular carcinoma. Journal of Hepatocellular Carcinoma, 127. https://doi.org/10.2147/JHC.S48512 Choy, T.-K., Wang, C.-Y., Phan, N. N., Khoa Ta, H. D., Anuraga, G., Liu, Y.-H., Wu, Y.-F., Lee, K.-H., Chuang, J.-Y., and Kao, T.-J. (2021). Identification of Dipeptidyl Peptidase (DPP) Family Genes in Clinical Breast Cancer Patients via an Integrated Bioinformatics Approach. Diagnostics, 11(7), 1204. https://doi.org/10.3390/diagnostics11071204 D’Amico, G., Morabito, A., D’Amico, M., Pasta, L., Malizia, G., Rebora, P., and Valsecchi, M. G. (2018). New concepts on the clinical course and stratification of compensated and decompensated cirrhosis. Hepatology International, 12(S1), 34–43. https://doi.org/10.1007/s12072-017-9808-z Daina, A., Michielin, O., and Zoete, V. (2019). SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Research, 47(W1), W357–W364. https://doi.org/10.1093/nar/gkz382 Dallakyan, S., and Olson, A. J. (2015). Small-Molecule Library Screening by Docking with PyRx. In Chemical Biology (pp. 243–250). Humana Press. https://doi.org/10.1007/978-1-4939-2269-7_19 Du, T.-Y., Gao, Y.-X., and Zheng, Y.-S. (2023). Identification of key genes related to immune infiltration in cirrhosis via bioinformatics analysis. Scientific Reports, 13(1), 1876. https://doi.org/10.1038/s41598-022-26794-8 Efsen, E. (2001). Agonist-specific regulation of monocyte chemoattractant protein-1 expression by cyclooxygenase metabolites in hepatic stellate cells. Hepatology, 33(3), 713–721. https://doi.org/10.1053/jhep.2001.22761 Farombi, E. O., Shrotriya, S., Na, H.-K., Kim, S.-H., and Surh, Y.-J. (2008). Curcumin attenuates dimethylnitrosamine-induced liver injury in rats through Nrf2-mediated induction of heme oxygenase-1. Food and Chemical Toxicology, 46(4), 1279–1287. https://doi.org/10.1016/j.fct.2007.09.095 Farzaei, M., Zobeiri, M., Parvizi, F., El-Senduny, F., Marmouzi, I., Coy-Barrera, E., Naseri, R., Nabavi, S., Rahimi, R., and Abdollahi, M. (2018). Curcumin in Liver Diseases: A Systematic Review of the Cellular Mechanisms of Oxidative Stress and Clinical Perspective. Nutrients, 10(7), 855. https://doi.org/10.3390/nu10070855 Fehl, D. J., and Ahmed, M. (2017). Curcumin promotes the oncoltyic capacity of vesicular stomatitis virus for the treatment of prostate cancers. Virus Research, 228, 14–23. https://doi.org/10.1016/j.virusres.2016.10.020 Forouzanfar, F., Barreto, G., Majeed, M., and Sahebkar, A. (2019). Modulatory effects of curcumin on heat shock proteins in cancer: A promising therapeutic approach. BioFactors, 45(5), 631–640. https://doi.org/10.1002/biof.1522 Fuchs, B. C., Hoshida, Y., Fujii, T., Wei, L., Yamada, S., Lauwers, G. Y., McGinn, C. M., DePeralta, D. K., Chen, X., Kuroda, T., Lanuti, M., Schmitt, A. D., Gupta, S., Crenshaw, A., Onofrio, R., Taylor, B., Winckler, W., Bardeesy, N., Caravan, P., … Tanabe, K. K. (2014). Epidermal growth factor receptor inhibition attenuates liver fibrosis and development of hepatocellular carcinoma. Hepatology, 59(4), 1577–1590. https://doi.org/10.1002/hep.26898 Gao, M., Geng, X.-P., and Xiang, H.-P. (2015). HSP90 and SIRT3 expression in hepatocellular carcinoma and their effect on invasive capability of human hepatocellular carcinoma cells. Asian Pacific Journal of Tropical Medicine, 8(4), 305–308. https://doi.org/10.1016/S1995-7645(14)60335-7 Gao, X., Wang, X., and Zhang, S. (2018). Bioinformatics identification of crucial genes and pathways associated with hepatocellular carcinoma. Bioscience Reports, 38(6). https://doi.org/10.1042/BSR20181441 Garcia-Compean, D., Jaquez-Quintana, J. O., Gonzalez-Gonzalez, J. A., and Maldonado-Garza, H. (2009). Liver cirrhosis and diabetes: Risk factors, pathophysiology, clinical implications and management. World Journal of Gastroenterology, 15(3), 280. https://doi.org/10.3748/wjg.15.280 Ge, P. S., and Runyon, B. A. (2016). Treatment of Patients with Cirrhosis. New England Journal of Medicine, 375(8), 767–777. https://doi.org/10.1056/NEJMra1504367 Gentleman, R. C., Carey, V. J., Bates, D. M., Bolstad, B., Dettling, M., Dudoit, S., Ellis, B., Gautier, L., Ge, Y., Gentry, J., Hornik, K., Hothorn, T., Huber, W., Iacus, S., Irizarry, R., Leisch, F., Li, C., Maechler, M., Rossini, A. J., … Zhang, J. (2004). Bioconductor: open software development for computational biology and bioinformatics. Genome Biology, 5(R80). https://doi.org/10.1186/gb-2004-5-10-r80 Giaginis, C., Daskalopoulou, S. S., Vgenopoulou, S., Sfiniadakis, I., Kouraklis, G., and Theocharis, S. E. (2009). Heat Shock Protein-27, -60 and -90 expression in gastric cancer: association with clinicopathological variables and patient survival. BMC Gastroenterology, 9(1), 14. https://doi.org/10.1186/1471-230X-9-14 Gonzalez-Sanchez, E., Firrincieli, D., Housset, C., and Chignard, N. (2017). Expression patterns of nuclear receptors in parenchymal and non-parenchymal mouse liver cells and their modulation in cholestasis. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1863(7), 1699–1708. https://doi.org/10.1016/j.bbadis.2017.04.004 Gupta, S. C., Patchva, S., Koh, W., and Aggarwal, B. B. (2012). Discovery of curcumin, a component of golden spice, and its miraculous biological activities. Clinical and Experimental Pharmacology and Physiology, 39(3), 283–299. https://doi.org/10.1111/j.1440-1681.2011.05648.x Hardwick, J. P., Osei-Hyiaman, D., Wiland, H., Abdelmegeed, M. A., and Song, B.-J. (2009). PPAR/RXR Regulation of Fatty Acid Metabolism and Fatty Acid -Hydroxylase (CYP4) Isozymes: Implications for Prevention of Lipotoxicity in Fatty Liver Disease. PPAR Research, 2009, 1–20. https://doi.org/10.1155/2009/952734 Johan, A. K. (2016). Uji In Silico Senyawa Genistein Sebagai Ligan Pada Reseptor Estrogen Alfa. Universitas Sananta Darma. Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y., and Morishima, K. (2017). KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Research, 45(D1), D353–D361. https://doi.org/10.1093/nar/gkw1092 Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M., and Tanabe, M. (2016). KEGG as a reference resource for gene and protein annotation. Nucleic Acids Research, 44(D1), D457–D462. https://doi.org/10.1093/nar/gkv1070 Kementerian Kesehatan Republik Indonesia. (2014). Riset Kesehatan Dasar. Kesuma, D. G. (2014). A Women 51 Years With Decompensated Liver Cirrhosis With Gastritis Chronic and Kidney Chronic Disease Stage III. Jurnal Medula, 3(01), 151–159. http://juke.kedokteran.unila.ac.id/index.php/medula/article/view/437 Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J., and Bolton, E. E. (2023). PubChem 2023 update. Nucleic Acids Research, 51(D1), D1373–D1380. https://doi.org/10.1093/nar/gkac956 Krishnan, V., and Rupp, B. (2012). Macromolecular Structure Determination: Comparison of X‐ray Crystallography and <scp>NMR</scp> Spectroscopy. In eLS. Wiley. https://doi.org/10.1002/9780470015902.a0002716.pub2 Kustiawan, P. M., Siregar, K. A. A. K., Saleh, L. O., Batistuta, M. A., and Setiawan, I. M. (2021). A Review of Botanical Characteristics, Chemical Composition, Pharmacological Activity and Use of Scorodocarpus borneensis. Biointerface Research in Applied Chemistry, 12(6), 8324–8334. https://doi.org/10.33263/BRIAC126.83248334 Kyung, E. J., Kim, H. B., Hwang, E. S., Lee, S., Choi, B. K., Kim, J. W., Kim, H. J., Lim, S. M., Kwon, O. I., and Woo, E. J. (2018). Evaluation of Hepatoprotective Effect of Curcumin on Liver Cirrhosis Using a Combination of Biochemical Analysis and Magnetic Resonance-Based Electrical Conductivity Imaging. Mediators of Inflammation, 2018, 1–9. https://doi.org/10.1155/2018/5491797 Lei, X., Jing, J., Zhang, M., Guan, B., Dong, Z., and Wang, C. (2021). Bioinformatic Identification of Hub Genes and Analysis of Prognostic Values in Colorectal Cancer. Nutrition and Cancer, 73(11–12), 2568–2578. https://doi.org/10.1080/01635581.2020.1841249 Leng, A., Liu, T., Yang, J., Cui, J., Li, X., Zhu, Y., Xiong, T., Zhang, G., and Chen, Y. (2012). The apoptotic effect and associated signalling of HSP90 inhibitor 17-DMAG in hepatocellular carcinoma cells. Cell Biology International, 36(10), 893–899. https://doi.org/10.1042/CBI20110473 Lewis, S. N., Bevan, D. R., Bassaganya-Riera, J., Sible, J., and Zhang, L. (2013). Refinement of the Docking Component of Virtual Screening for PPARγ Therapeutics Using Pharmacophore Analysis and Molecular Dynamics. Virginia Polytechnic Institute and State University. Li, D., Fu, J., Du, M., Zhang, H., Li, L., Cen, J., Li, W., Chen, X., Lin, Y., Conway, E. M., Pikarsky, E., Wang, H., Pan, G., Ji, Y., Wang, H., and Hui, L. (2016). Hepatocellular carcinoma repression by TNFα‐mediated synergistic lethal effect of mitosis defect‐induced senescence and cell death sensitization. Hepatology, 64(4), 1105–1120. https://doi.org/10.1002/hep.28637 Li, J., Zou, B., Yeo, Y. H., Feng, Y., Xie, X., Lee, D. H., Fujii, H., Wu, Y., Kam, L. Y., Ji, F., Li, X., Chien, N., Wei, M., Ogawa, E., Zhao, C., Wu, X., Stave, C. D., Henry, L., Barnett, S., … Nguyen, M. H. (2019). Prevalence, incidence, and outcome of non-alcoholic fatty liver disease in Asia, 1999–2019: a systematic review and meta-analysis. The Lancet Gastroenterology & Hepatology, 4(5), 389–398. https://doi.org/10.1016/S2468-1253(19)30039-1 Li, Z., Kruijt, J. K., der Sluis, R. J. van, Berkel, T. J. C. Van, and Hoekstra, M. (2013). Nuclear receptor atlas of female mouse liver parenchymal, endothelial, and Kupffer cells. Physiological Genomics, 45(7), 268–275. https://doi.org/10.1152/physiolgenomics.00151.2012 Liu, X., Ouyang, S., Yu, B., Liu, Y., Huang, K., Gong, J., Zheng, S., Li, Z., Li, H., and Jiang, H. (2010). PharmMapper server: a web server for potential drug target identification using pharmacophore mapping approach. Nucleic Acids Research, 38(suppl_2), W609–W614. https://doi.org/10.1093/nar/gkq300 Liu, Z., Sun, Y., Zhen, H., and Nie, C. (2022). Network Pharmacology Integrated with Transcriptomics Deciphered the Potential Mechanism of Codonopsis pilosula against Hepatocellular Carcinoma. Evidence-Based Complementary and Alternative Medicine, 2022, 1–10. https://doi.org/10.1155/2022/1340194 Mahmoudi, A., Atkin, S. L., Jamialahmadi, T., Banach, M., and Sahebkar, A. (2022). Effect of Curcumin on Attenuation of Liver Cirrhosis via Genes/Proteins and Pathways: A System Pharmacology Study. Nutrients, 14(20), 4344. https://doi.org/10.3390/nu14204344 Mao, Y., Hao, J., Jin, Z.-Q., Niu, Y.-Y., Yang, X., Liu, D., Cao, R., and Wu, X.-Z. (2017). Network pharmacology-based and clinically relevant prediction of the active ingredients and potential targets of Chinese herbs in metastatic breast cancer patients. Oncotarget, 8(16), 27007–27021. https://doi.org/10.18632/oncotarget.15351 Marcius, D. (2022). Analisis Potensi Senyawa Bioaktif Propolis sebagai Kandidat Obat Antihiperinflamasi Penyakit COVID-19 dengan Pendekatan Target Fishing Komputasional serta Penambatan Molekuler dan Dinamika Molekuler. Institut Teknologi Bandung. Meng, X.-Y., Zhang, H.-X., Mezei, M., and Cui, M. (2011). Molecular Docking: A Powerful Approach for Structure-Based Drug Discovery. Current Computer Aided-Drug Design, 7(2), 146–157. https://doi.org/10.2174/157340911795677602 Nabavi, S. F., Daglia, M., Moghaddam, A. H., Habtemariam, S., and Nabavi, S. M. (2014). Curcumin and Liver Disease: from Chemistry to Medicine. Comprehensive Reviews in Food Science and Food Safety, 13(1), 62–77. https://doi.org/10.1111/1541-4337.12047 Noor, F., Tahir ul Qamar, M., Ashfaq, U. A., Albutti, A., Alwashmi, A. S. S., and Aljasir, M. A. (2022). Network Pharmacology Approach for Medicinal Plants: Review and Assessment. Pharmaceuticals, 15(5), 572. https://doi.org/10.3390/ph15050572 Nouri‐Vaskeh, M., Malek Mahdavi, A., Afshan, H., Alizadeh, L., and Zarei, M. (2020). Effect of curcumin supplementation on disease severity in patients with liver cirrhosis: A randomized controlled trial. Phytotherapy Research, 34(6), 1446–1454. https://doi.org/10.1002/ptr.6620 Nurdjanah, S. (2014). Sirosis Hati. In Buku Ajar Ilmu Penyakit Dalam2 (pp. 1978–1983). Internal publishing. Pattabang, I., and Wangko, S. (2013). Peran Sel Stelata Hepatik Pada Sirosis Hepatis. JURNAL BIOMEDIK (JBM), 1(1). https://doi.org/10.35790/jbm.1.1.2009.807 Pick, E., Kluger, Y., Giltnane, J. M., Moeder, C., Camp, R. L., Rimm, D. L., and Kluger, H. M. (2007). High HSP90 Expression Is Associated with Decreased Survival in Breast Cancer. Cancer Research, 67(7), 2932–2937. https://doi.org/10.1158/0008-5472.CAN-06-4511 Pinter, M., Trauner, M., Peck-Radosavljevic, M., and Sieghart, W. (2016). Cancer and liver cirrhosis: implications on prognosis and management. ESMO Open, 1(2), e000042. https://doi.org/10.1136/esmoopen-2016-000042 Puteri, F. D. (2020). Efek Kurkumin Pada Kunyit (Curcuma longa) Sebagai Pengobatan Kanker Lambung. Jurnal Ilmiah Kesehatan Sandi Husada, 9(2). https://doi.org/10.35816/jiskh.v10i2.426 Qin, L., Kuai, J., Yang, F., Yang, L., Sun, P., Zhang, L., and Li, G. (2022). Selected by bioinformatics and molecular docking analysis, Dhea and 2–14,15-Eg are effective against cholangiocarcinoma. PLOS ONE, 17(2), e0260180. https://doi.org/10.1371/journal.pone.0260180 Qiu, J., Zhou, Q., Zhai, X., Jia, X., and Zhou, Y. (2014). Curcumin regulates delta-like homolog 1 expression in activated hepatic stellate cell. European Journal of Pharmacology, 728, 9–15. https://doi.org/10.1016/j.ejphar.2014.01.074 Raval, K., and Ganatra, T. (2022). Basics, types and applications of molecular docking: A review. IP International Journal of Comprehensive and Advanced Pharmacology, 7(1), 12–16. https://doi.org/10.18231/j.ijcaap.2022.003 Rodina, A., Vilenchik, M., Moulick, K., Aguirre, J., Kim, J., Chiang, A., Litz, J., Clement, C. C., Kang, Y., She, Y., Wu, N., Felts, S., Wipf, P., Massague, J., Jiang, X., Brodsky, J. L., Krystal, G. W., and Chiosis, G. (2007). Selective compounds define Hsp90 as a major inhibitor of apoptosis in small-cell lung cancer. Nature Chemical Biology, 3(8), 498–507. https://doi.org/10.1038/nchembio.2007.10 Safran, M., Rosen, N., Twik, M., BarShir, R., Stein, T. I., Dahary, D., Fishilevich, S., and Lancet, D. (2021). The GeneCards Suite. In Practical Guide to Life Science Databases (pp. 27–56). Springer Nature Singapore. https://doi.org/10.1007/978-981-16-5812-9_2 Sangiovanni, A., Prati, G. M., Fasani, P., Ronchi, G., Romeo, R., Manini, M., Del Ninno, E., Morabito, A., and Colombo, M. (2006). The natural history of compensated cirrhosis due to hepatitis C virus: A 17-year cohort study of 214 patients. Hepatology, 43(6), 1303–1310. https://doi.org/10.1002/hep.21176 Seo, H.-Y., Lee, S.-H., Lee, J.-H., Kang, Y. N., Hwang, J. S., Park, K.-G., Kim, M. K., and Jang, B. K. (2020). Src Inhibition Attenuates Liver Fibrosis by Preventing Hepatic Stellate Cell Activation and Decreasing Connective Tissue Growth Factor. Cells, 9(3), 558. https://doi.org/10.3390/cells9030558 Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., and Ideker, T. (2003). Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Research, 13(11), 2498–2504. https://doi.org/10.1101/gr.1239303 Solà, E., and Ginès, P. (2015). Challenges and Management of Liver Cirrhosis: Pathophysiology of Renal Dysfunction in Cirrhosis. Digestive Diseases, 33(4), 534–538. https://doi.org/10.1159/000375344 Stelzer, G., Rosen, N., Plaschkes, I., Zimmerman, S., Twik, M., Fishilevich, S., Stein, T. I., Nudel, R., Lieder, I., Mazor, Y., Kaplan, S., Dahary, D., Warshawsky, D., Guan‐Golan, Y., Kohn, A., Rappaport, N., Safran, M., and Lancet, D. (2016). The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses. Current Protocols in Bioinformatics, 54(1). https://doi.org/10.1002/cpbi.5 Sun, Y., Zang, Z., Xu, X., Zhang, Z., Zhong, L., Zan, W., Zhao, Y., and Sun, L. (2010). Differential Proteomics Identification of HSP90 as Potential Serum Biomarker in Hepatocellular Carcinoma by Two-dimensional Electrophoresis and Mass Spectrometry. International Journal of Molecular Sciences, 11(4), 1423–1433. https://doi.org/10.3390/ijms11041423 Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-Cepas, J., Simonovic, M., Roth, A., Santos, A., Tsafou, K. P., Kuhn, M., Bork, P., Jensen, L. J., and von Mering, C. (2015). STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Research, 43(D1), D447–D452. https://doi.org/10.1093/nar/gku1003 Tang, Y., Li, M., Wang, J., Pan, Y., and Wu, F.-X. (2015). CytoNCA: A cytoscape plugin for centrality analysis and evaluation of protein interaction networks. Biosystems, 127, 67–72. https://doi.org/10.1016/j.biosystems.2014.11.005 Toraih, E. A., Alrefai, H. G., Hussein, M. H., Helal, G. M., Khashana, M. S., and Fawzy, M. S. (2019). Overexpression of heat shock protein HSP90AA1 and translocase of the outer mitochondrial membrane TOM34 in HCV-induced hepatocellular carcinoma: A pilot study. Clinical Biochemistry, 63, 10–17. https://doi.org/10.1016/j.clinbiochem.2018.12.001 Trott, O., and Olson, A. J. (2009). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, NA-NA. https://doi.org/10.1002/jcc.21334 Tsochatzis, E. A., Bosch, J., and Burroughs, A. K. (2014). Liver cirrhosis. The Lancet, 383(9930), 1749–1761. https://doi.org/10.1016/S0140-6736(14)60121-5 Tsuchida, T., and Friedman, S. L. (2017). Mechanisms of hepatic stellate cell activation. Nature Reviews Gastroenterology & Hepatology, 14(7), 397–411. https://doi.org/10.1038/nrgastro.2017.38 Vadukoot, A. K., Mottemmal, S., and Vekaria, P. H. (2022). Curcumin as a Potential Therapeutic Agent in Certain Cancer Types. Cureus. https://doi.org/10.7759/cureus.22825 Vera-Ramirez, L., Pérez-Lopez, P., Varela-Lopez, A., Ramirez-Tortosa, Mc., Battino, M., and Quiles, J. L. (2013). Curcumin and liver disease. BioFactors, 39(1), 88–100. https://doi.org/10.1002/biof.1057 Walker, S., Wankell, M., Ho, V., White, R., Deo, N., Devine, C., Dewdney, B., Bhathal, P., Govaere, O., Roskams, T., Qiao, L., George, J., and Hebbard, L. (2019). Targeting mTOR and Src restricts hepatocellular carcinoma growth in a novel murine liver cancer model. PLOS ONE, 14(2), e0212860. https://doi.org/10.1371/journal.pone.0212860 Wang, Y., Nakajima, T., Gonzalez, F. J., and Tanaka, N. (2020). PPARs as Metabolic Regulators in the Liver: Lessons from Liver-Specific PPAR-Null Mice. International Journal of Molecular Sciences, 21(6), 2061. https://doi.org/10.3390/ijms21062061 Yao, Z.-J., Dong, J., Che, Y.-J., Zhu, M.-F., Wen, M., Wang, N.-N., Wang, S., Lu, A.-P., and Cao, D.-S. (2016). TargetNet: a web service for predicting potential drug–target interaction profiling via multi-target SAR models. Journal of Computer-Aided Molecular Design, 30(5), 413–424. https://doi.org/10.1007/s10822-016-9915-2 Yu, S., Gao, W., Zeng, P., Lu, M., Tan, X., Zhang, Z., Liu, Z., Hou, Z., and Liu, J. (2021). Study on the effects of Polyphyllin I and Curcumin on liver cancer based on the cross-action of ferroptosis and energy metabolism. Research Square. https://doi.org/10.21203/rs.3.rs-929877/v1 Yulian, H. (2021). 5 Makanan Sehat yang Wajib Dikonsumsi Penderita Penyakit Liver. MOMSMONEY.ID. https://www.momsmoney.id/news/5-makanan-sehat-yang-wajib-dikonsumsi-penderita-penyakit-liver Zhao, J., Yang, J., Tian, S., and Zhang, W. (2019). A survey of web resources and tools for the study of TCM network pharmacology. Quantitative Biology, 7(1), 17–29. https://doi.org/10.1007/s40484-019-0167-8id_ID
dc.identifier.urihttps://dspace.umkt.ac.id//handle/463.2017/3834
dc.description.abstractSirosis berkembang secara alami dalam tiga tahap: terkompensasi, dekompensasi, dan dekompensasi lanjut, yang berakhir dengan risiko kematian. Global Burden of Disease (GBD) melaporkan bahwa 112 juta orang di seluruh dunia menderita sirosis kompensasi pada tahun 2017, sementara sirosis dekompensasi akhir hampir tidak bertahan satu tahun. Pada tahun 2019, 1.472.000 orang meninggal karena sirosis, naik 10% dari tahun 2010. Meskipun mekanisme anti-sirosis kurkumin telah dipelajari akan tetapi, protein target yang memengaruhi kelangsungan hidup pasien pada setiap tahap terbentuknya sirosis. Studi ini menggunakan Network Pharmacology untuk membangun jaringan obat-target-penyakit yang memanfaatkan bioinformatika dan skrining high throughput. 54 protein dengan membentuk 282 interaksi jaringan protein-protein yang terasosiasi dalam kurkumin-sirosis hati. 8 Protein penting diidentifikasi melalui analisis jaringan menggunakan plug-in CytoNCA pada Aplikasi Cytoscape. Analisis pengayaan fungsional menggunakan jalur KEGG menunjukkan bahwa protein kunci terlibat dalam berbagai jalur, termasuk kanker, resistensi endokrin, pensinyalan estrogen, karsinogenesis kimia - aktivasi reseptor, lipid, dan aterosklerosis. Namun, target protein ini biasanya terlibat dalam jalur kanker. Empat protein Upregulated dan empat downregulated pada pasien Hepatocellular carcinoma. Penyebab kematian terbesar adalah Hepatocellular carcinoma, yang berakar dari sirosis hati. SRC, PPARG, dan HSP90AA1 adalah tiga protein yang berperan yang secara substansial terkait dengan kemungkinan bertahan hidup yang lebih buruk pada pasien Hepatocellular carcinoma dengan durasi bertahan hidup kurang dari 4000 hari (~11 tahun). Kurkumin memiliki binding affinity yang lebih besar daripada ligan alami SRC, PPARG, dan HSP90AA1. Kurkumin mengungguli rosiglitazone dalam pengikatan ligan PPARG.id_ID
dc.language.isoidid_ID
dc.publisherUniversitas Muhammadiyah Kalimantan Timurid_ID
dc.subjectTerapi Sirosis Hatiid_ID
dc.subjectKurkuminid_ID
dc.subjectNetwork Pharmacologyid_ID
dc.subjectMolecular Dockingid_ID
dc.titleIDENTIFIKASI TARGET TERAPI KURKUMIN SEBAGAI AGEN HEPAPROTEKTOR PADA SIROSIS HATI BERDASARKAN PENDEKATAN NETWORK PHAMACOLOGY DAN MOLECULAR DOCKINGid_ID
dc.title.alternativeIdentification of The Therapy Target of Curcumin as Hepaprotector Agent in Liver Cirrhosis Based on Network Phamacology and Molecular Docking Approachid_ID
dc.typeSkripsiid_ID


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record